RECOGNISING ACHIEVEMENT

GCE

Mathematics

Advanced GCE 4732

Probability and Statistics 1

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Note: " $(3 \mathrm{sfs})$ " means "answer which rounds to ... to 3 sfs ". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding Penalise over-rounding only once in paper.

1 i	590	B1 1	Allow approximately 590
ii	Graph horiz (for $\geq 55 \mathrm{mks}$) oe	B1 1	or levels off, or grad $=0$, grad not increase Allow line not rise, goes flat, plateaus, stops increasing, not increase, doesn't move
iii	39 to 41	B1 1	
iv	Attempt read cf at 26 or 27 Double \& attempt read x $\text { Max C = } 29 \text { to } 31.5$	M1 M1 A1 3	eg $26 \mathrm{mks} \rightarrow 150^{\text {in }} 27 \mathrm{mks} \rightarrow 180$ eg read at $\mathrm{cf}=300$ or 360 Indep of first M1 May be implied by ans Answer within range, no working, M1M1A1 32 without working, sc B1
v	$\begin{aligned} & \mathrm{LQ}=25.5-26.5 \text { or } \mathrm{UQ}=34-35.5 \\ & \mathrm{IQR}=8-10 \end{aligned}$ (German) more spread	M1 A1 B1ft 3	M1 for one correct quartile dep ≥ 1 correct quartile or no working or less consistent, less uniform, less similar, more varied, more variable, greater variance, more spaced apart, further apart ft their IQR; must be consistent with IQR Correct comment with no working: M0A0B1
Total		9	
2 i	Opposite orders or ranks or scores or results or marks $r_{s}=-1$	B1 1	or reversed, or backwards, or inverse or as one increases the other decreases Needs reason AND value
ii	Attempt Σd^{2} $(=6)$ $\left\lvert\, \begin{aligned} & 1-\frac{6 \times \Sigma d^{2}}{3\left(3^{2}-1\right)} \\ & =-\frac{1}{2} \quad \mathrm{oe} \end{aligned}\right.$	M1 A1 3	dep $1^{\text {st }}$ M1 Allow use wrong table for M1M1
iii	$\begin{aligned} & 3!\text { or }{ }^{3} P_{3} \text { or } 6 \\ & 1 \div \text { their }{ }^{`} 6 \text { ' } \\ & \frac{1}{6} \text { oe eg } \frac{6}{36} \end{aligned}$	M1 M1 A1 3	r attempt list possible orders of $1,2,3$ (≥ 3 orders) $2^{\text {nd }}$ M1 for fully correct method only or $\frac{1}{3} \times \frac{1}{2}(\times 1):$ M1M1
Total		7	
3 i	If x is contr (or indep) or y depend't, use y on x If neither variable contr'd (or indep) AND want est y from x : use y on x	B1 $\text { B1 } 2$	Allow x increases constantly, is predetermined, you choose x, you set x, x is fixed, x is chosen Allow y not controlled AND want est y from x Ignore incorrect comments
iia	$\begin{array}{ll} S_{x x}=510000-\frac{1800^{2}}{9} & (=150000) \\ S_{x y}=4080-\frac{1800 \times 14.4}{9} & (=1200) \\ b=\frac{1200^{\prime}}{1^{150000^{\prime}}} & (=0.008) \\ y-\frac{14.4}{9}=0.008\left(x-\frac{1800}{9}\right) \\ y=0.008 x(+0) & \end{array}$	M1 M1 M1 A1 4	or $\frac{510000}{9}-200^{2} \quad(=16666.7)$ or $\frac{4080}{9}-200 \times 1.6(=133.33)$ M1 for either S $b=\frac{{ }^{\prime} 133.33^{\prime}}{16666.7^{\prime}} \quad$ dep correct expressions both S 's or $a=\frac{14.4}{9}-0.008 \times \frac{1800}{9} \quad(=0)$ Must be all correct for M1 CAO
iib	312.5 or 313	Bift 1	ft their equo in (iia)
ic	-0.4	B1ft	ft their equn in (iia)

6	$\begin{aligned} & m=(9 \times 6+3) \div 10 \\ & =5.7 \\ & 2=\frac{\Sigma x^{2}}{9}-6^{2} \\ & \Sigma x^{2}=2 \times 9+6^{2} \times 9 \text { or } 342 \\ & v=\frac{\left('^{2} 342^{\prime}+3^{2}\right)}{10}-5.7^{\prime 2} \\ & =2.61 \mathrm{oe} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } 6 \end{aligned}$	or $(($ Sum of any 9 nos totalling 54$)+3) \div 10$ or $\frac{\Sigma(x-6)^{2}}{9}=2$ M1 or $\Sigma x^{2}=18+12 \times 54-36 \times 9$ or 342 A 1 dep Σx^{2} attempted, eg $(\Sigma x)^{2}(=3249)$ or just state ' Σx^{2} '; allow $\sqrt{ }$ CAO
Total		6	
7 i	$\begin{aligned} & { }^{4} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{4} \text { or } 6 \times 20 \times 5 \\ & =660 \end{aligned}$	$$	M1 for any 2 correct combs seen, even if added
ii	$\begin{aligned} & \frac{2}{4} \text { or } \frac{{ }^{3} C_{1}}{{ }^{4} C_{2}} \text { or } \frac{{ }^{3} C_{1} \times{ }^{6}{ }^{6}{ }_{3}{ }^{5} C_{4}}{{ }^{4} C_{2} \times{ }^{6} C_{3} \times{ }^{5} C_{4}} \text { or } \\ & \frac{{ }^{3} C_{1}{ }^{6} C^{C} 3^{5} C_{4}}{1600} \\ & =\frac{1}{2} \text { oe } \end{aligned}$	A1 2	or $\frac{1}{4} \times 1+\frac{3}{4} \times \frac{1}{3}$ or $\frac{1}{4} \times 2$ or $\frac{1}{4}+\frac{1}{4}$
iii	${ }^{3} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{3}\left(\times{ }^{4} \mathrm{C}_{4}\right)+{ }^{3} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{4}$ 360	$\begin{gathered} \text { M1M1 } \\ \text { A1 } 3 \end{gathered}$	M1 either product seen, even if \times or \div by something
Total		8	
8			
:---	:---	:---	:---
8ia	Geo(0.3) stated or implied $0.7^{3} \times 0.3$ $=0.103(3 \mathrm{sf})$	M1 M1 A1	by $0.7^{n} \times 0.3$

Total 72 marks

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

