

GCE

Mathematics

Advanced GCE 4732

Probability and Statistics 1

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

1i	590	B1 1	1	Allow approximately 590
ii	Graph horiz (for ≥ 55 mks) oe	B1	1	or levels off, or $grad = 0$, $grad$ not increase
	· · · · · ·			Allow line not rise, goes flat, plateaus, stops
				increasing, not increase, doesn't move
iii	39 to 41	B1	1	
iv	Attempt read of at 26 or 27	M1		$eg 26 \text{ mks} \rightarrow 150^{\text{th}}$ 27 mks $\rightarrow 180^{\text{th}}$
1,	Double & attempt read r	M1		eg read at $cf = 300$ or 360 Inden of first M1
	Double & uttempt fead x	1411		May be implied by ans
	$M_{00} = 20 \text{ to } 21.5$	A 1 -	2	Answer within range, no working M1M1A1
	Max C = 29 10 31.3	AI .	5	Allswei within lange, no working, withitAl
		N/1		52 without working, sc B1
V	LQ = 25.5 - 26.5 or UQ = 34 - 35.5	MI		M1 for one correct quartile
	IQR = 8-10	Al		dep \geq 1 correct quartile or no working
	(German) more spread	B1ft	3	or less consistent, less uniform, less similar,
				more varied, more variable, greater variance,
				more spaced apart, further apart
				ft their IQR; must be consistent with IQR
				Correct comment with no working: M0A0B1
Total		9		
2i	Opposite orders or ranks or scores			or reversed, or backwards, or inverse
	or results or marks			or as one increases the other decreases
	$r_{s} = -1$	B1 2	1	Needs reason AND value
ii	Attempt Σd^2 (= 6)	M1		
	$1 6 \times \Sigma d^2$			
	$1 - \frac{1}{3(3^2 - 1)}$	M1		dep 1 st M1
	$=-\frac{1}{2}$ or			Allow use wrong table for M1M1
	2 00	A1 .	3	-
iii	3! or ${}^{3}P_{3}$ or 6	M1		r attempt list possible orders of 1,2,3 (\geq 3 orders)
	$1 \div \text{their '6'}$	M1		2 nd M1 for fully correct method only
				or $\frac{1}{2} \times \frac{1}{2} (\times 1)$: M1M1
	$\frac{1}{6}$ oe eg $\frac{6}{36}$	A1 .	3	3 2 3
Total		7		
Total		/		
31	If x is contr (or indep) or y depend t,	54		Allow <i>x</i> increases constantly, is predetermined,
	use y on x	BI		you choose x , you set x , x is fixed, x is chosen
	If neither variable contr'd (or indep)	D 1	-	Allow y not controlled AND want est y from x
	AND want est y from x: use y on x	BIZ	2	.
:-				Ignore incorrect comments
11a	$S_{xx} = 510000 - \frac{1800^2}{2}$ (= 150000)			or $\frac{510000}{9} - 200^2$ (= 16666.7)
	g 4000 1800×14.4 (1200)	N/1		or $\frac{4080}{2}$ - 200×1.6 (= 133.33)
	$S_{xy} = 4080 - \frac{100004114}{9}$ (= 1200)	MI		$\frac{1}{9}$ 20011.0 (155.55)
				M1 for either S
	<i>i</i> '1200' (0.000)	N/1		$L = [133, 33]$ does connect comparison that C'_{2}
	$b = \frac{1200}{150000'} \qquad (= 0.008)$	MI		$b = \frac{100000}{16666.7}$ dep correct expressions both 5 s
	14.4 - 0.008(1800)	M1		or $a = \frac{14.4}{0.008} - 0.008 \times \frac{1800}{0.000}$ (= 0)
	$y = \frac{1}{9} = 0.008(x - \frac{1}{9})$	1411		9 ····· 9 (*)
				Must be all correct for MT
	y = 0.008x (+ 0)	A1 4	4	CAU
iib	312.5 or 313	B1ft	1	ft their equn in (iia)
iic	-0.4	B1ft	1	ft their equn in (iia)

4732		Mark S	cheme June 201
iid	Contraction oe	B1(ft)	or length decreased, shorter, pushed in, shrunk, smaller
	Unreliable because extrapolated oe	B1 2	or not in the range of x or not in range of previous results
Total		10	
4ia	0.299 (3 sf)	B1 1	
ib	0.2991 - 0.1040	M1	Must subtract correct pair from table
	$= 0.195 (3 \text{ sf}) \text{ or } \frac{1280}{6561} \text{ oe}$	A1 2	
iia	$^{15}C_4 \times (1-0.22)^{11} \times 0.22^4$	M1	Allow M1 for ${}^{15}C_4 \times 0.88^{11} \times 0.22^4$
	= 0.208 (3 sf)	A1 2	
iib	$(15 \times 0.22 =) 3.3$	B1	
	$15 \times 0.22 \times (1-0.22)$ or '3.3'×(1-0.22)	M1	Allow M1 for $15 \times 0.22 \times 0.88$
	= 2.57 (3 sf)	A1 3	
Total		8	
51	$\frac{1}{2} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{1}{3}$ or $\frac{1}{4}$ or $\frac{1}{2}$	B1	or 1 out of 6 or 2 out of 12
			or $\frac{2!}{4!} \times 2$
	$(=\frac{1}{6} \mathbf{AG})$		
	$\frac{1}{4} \times \frac{2}{3} \text{ or } 2 \times \frac{1}{4} \times \frac{1}{3} \text{ or } \frac{1}{2} \times \frac{1}{3} \text{ or } \frac{2}{4} \times \frac{1}{3}$	B1	or $\frac{2}{12}$ or $\frac{1}{6}$ or $\frac{1}{3!}$ or $\frac{1}{4_{C_2}}$ or $\frac{2!}{4!} \times 2$
	Add two of these or double one	D1 2	
	$(-1 \mathbf{AC})$	Ы 3	
	$\left(-\frac{1}{3}\right)$		or $\frac{2}{{}^{4}C_{2}}$ or $4 \times \frac{1}{4} \times \frac{1}{3}$ or $\frac{2}{4} \times \frac{2}{3}$ or $\frac{4}{12}$ or $\frac{2!}{4!} \times 4$ B1B1
			or $\frac{2}{6}$ or $2 \times \frac{1}{6}$ or $\frac{2}{3!}$ or $\frac{2!}{3!}$ B1B1
ii	X = 3, 4, 5, 6 only, stated or used	B1	Allow repetitions Allow other values with zero probabilities.
	P(X=5) wking as for P(X=4) above or $1 - (\frac{1}{6} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{3}$	M1	
	P(X=3) wking as for $P(X=6)$ above		
	or $1 - (\frac{1}{3} + \frac{1}{3} + \frac{1}{6})$ or $\frac{1}{6}$	M1	or M1 for total of their probs = 1, dep B1
	3 4 5 6		or $P(X=3) = \frac{1}{2}$ $P(X=4) = \frac{1}{2}$ $P(X=5) = \frac{1}{2}$ $P(X=6) = \frac{1}{2}$
			Complete list of volves linked to probe
	$\overline{6}$ $\overline{3}$ $\overline{3}$ $\overline{6}$ $\overline{0}$	AI 4	
111	$\sum xp = 4\frac{1}{2}$	M1 A1	\geq 2 terms correct ft
	$\sum r^2 n$ (= 21 $\frac{1}{2}$)		
	$\sum_{i=1}^{n} p = \left(-2 \frac{1}{6}\right)$	MI	≥ 2 terms correct ft
	$-4\frac{1}{2}$	MI	Independent except dependent on +ve result
	$=\frac{11}{12}$ or 0.917 (3 sf)	A1 5	
Total	12	12	
I Juan			

4732		Mark S	cheme June	2010
6	$m = (9 \times 6 + 3) \div 10$	M1	or ((Sum of any 9 nos totalling 54) + 3) ÷ 10	
	= 5.7	A1		
	$2 = \frac{\Sigma x^2}{9} - 6^2$	M1	or $\frac{\Sigma(x-6)^2}{9} = 2$ M1	
	$\Sigma x^2 = 2 \times 9 + 6^2 \times 9$ or 342	A1	or $\Sigma x^2 = 18 + 12 \times 54 - 36 \times 9$ or 342 A1	
	$v = \frac{('342'+3^2)}{10} - '5.7'^2$	M1	dep Σx^2 attempted, eg $(\Sigma x)^2$ (= 3249) or just state ' Σx^2 '; allow $$	
	= 2.61 oe	A1 6	CAO	
Total		6		
7i	${}^{4}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4} \text{ or } 6 \times 20 \times 5$	M1M1	M1 for any 2 correct combs seen, even if added	
:	= 600	AI 3		
11	$\frac{2}{4}$ or $\frac{{}^{3}C_{1}}{{}^{4}C_{2}}$ or $\frac{{}^{3}C_{1} \times {}^{6}C_{3} \times {}^{5}C_{4}}{{}^{4}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4}}$ or	M1	or $\frac{1}{4} \times 1 + \frac{3}{4} \times \frac{1}{3}$ or $\frac{1}{4} \times 2$ or $\frac{1}{4} + \frac{1}{4}$	
	$\frac{{}^{3}C_{1}\times {}^{6}C_{3}\times {}^{5}C_{4}}{'600'}$			
	$=\frac{1}{2}$ oe	A1 2		
iii	${}^{3}C_{1} \times {}^{6}C_{3} (\times {}^{4}C_{4}) + {}^{3}C_{2} \times {}^{6}C_{3} \times {}^{5}C_{4}$	M1M1	M1 either product seen, even if \times or \div by something	
	360	A1 3		
Total		8		

8			
8ia	Geo(0.3) stated or implied	M1	by $0.7^{n} \times 0.3$
	$0.7^3 \times 0.3$	M1	
	= 0.103 (3 sf)	A1 3	
b	0.7^3 or 0.343	M1	0.7^3 must be alone, ie not $0.7^3 \times 0.3$ or similar
	$1 - 0.7^3$	M1	allow $1 - 0.7^4$ or 0.7599 or 0.76 for M1 only
			or $0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3$: M1M1
			1 term wrong or omitted or extra M1
			or $1 - (0.3 + 0.7 \times 0.3 + 0.7^2 \times 0.3)$ or 0.343: M1
	= 0.657	A1 3	
iia	State or imply one viewer in 1 st four	M1	or B(4, 0.3) stated, or ${}^{4}C_{1}$ used, or YNNNY
	4		
	${}^{4}C_{1} \times 0.7^{3} \times 0.3 \qquad (= 0.412)$	M1	
	× 0.3	M1	dep 1st M1
	= 0.123 (3 sf)	A1 4	
b	$0.7^{5} + {}^{5}C_{1} \times 0.7^{4} \times 0.3$	M1	or $1 - (0.3^2 + 2 \times 0.3^2 \times 0.7 + 3 \times 0.3^2 \times 0.7^2 + 4 \times 0.3^2 \times 0.7)$
	= 0.528 (3 sf)	A1 2	
			Not ISW, eg 1 – 0.528: M1A0
Total		12	

Total 72 marks

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

